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LETTER TO THE EDITOR 

On the Monte Carlo approach to texture determination 

K Krezhovt, T Vodenicharova$ and P Konstantinovt 
t Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy, 72 
TSarigradsko Qlaussee Boulevard, Sofia 1784, B u l w a  
1 Institute for Foreign Students, 27 A Veltchev Sheet, Sofia 1111. Bulgaria 

Received 8 August 1994 

Abstract. The feasibility of using the Monte Carlo (MC) approach to orientation dishibution 
function (ODF) approximation from experimental pole figures (PFS) is demonstrated. The MC 
simulation is combined with the local projection method developed recently for generation of 
the Pfs from a madel ODF. First, a set of ideal orientations represented by a sum of Gaussiaos 
is assumed and the corresponding set of points describing the texture is Imted within the 
orientation space by means of the MC algorithm presented. Next, this set of data points is 
projected upon the PFs by means of the local projection technique. The validity of this procedure 
for texture simulation is tested on the example of cold-rolled steel. 

It is well known that the interpretation of pole figures (FFS) obtained by diffraction methods 
on texturized polycrystalline samples is not straightforward and presents complicated 
problems. The appearance of false peaks (ghosts) in the distribution function of grain 
orientations f(g) and the violation of its positivity are characteristic for the series expansion 
method of Bunge [I] and Roe [Z] and related techniques [3] widely used for reconsiruction 
of the ODF from experimental PFs. Series truncation is one cause but the loss of information 
on the odd part of the ODF is an inherent drawback, as shown in 141, due to the inversion 
symmetry of PFS, which is a consequence of the fact that the directions of the normals hi 
and -hi to the set of the scattering microplanes {h i ,k i ,  l i ]  cannot be fixed on the basis of 
the diffraction experiment. 

In order to overcome the above-mentioned difficulties several authors have applied 
mathematical modelling of the ODF [5] or PFs [6]. Gaussians, Lorentzians [5] and more 
complex functions [7,. 81 have been found useful in the already classical analysis by ODF 
and PF expansion in spherical harmonics. However, the use of model functions is especially 
appropriate in the discrete methods 19, 10, 11, 12, 131 developed recently in an effort to 
elaborate ghost-free techniques for quantitative texture analysis. 

Following this line of study we have developed a local projection method (LPM) [14, 151 
for the construction of the PFs on the basis of a model ODF. The method has been 
demonstrated using a superposition of spherical Gaussian-type functions. The present work 
is aimed at extending the theory and demonstrating the feasibility of using the Monte Carlo 
(MC) approach for approximating the ODF from experimental PFs of cold-rolled low-carbon- 
steel sheet. 

Let us suppose that the true ODF is approximated by a constant background and a sum 
of spherical Gaussians, i.e. 
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Following Bunge [3] for the ith texture component centred at the point go; in the orientation 
space G we write 

(1) -2  2 f (gm, 8) = hko, 6) = Sa exp(-o / E , )  

where go!, g E G, Sot = (2n)/[bj(l -exp(-bZ/4))] is the maximum, and 6 is the orientation 
distance between go; and the arbitrary point g in orientation space. Here E; = b;/2-&, 
where bi = A 6  is the f i l l  width at half-maximum. The orientation g = [U, p, y ]  of the 
arbitrary microcrystalline grain is treated as a random variable defined through a triad of 
Eulerian angles 0 6 U, y < 2n and 0 6 p < n used to describe the mutual orientation of 
the coordinate system Kb fixed to the crystallite and the reference system K, bound to the 
sample. In terms of the variables introduced by Matthies et al [la] 

(2) 

60}, g = {U, ,!?’, 6 }  and dg = 4sin(2p’) dp’dsdu, the orientation distance 

cos - = cos@?’) cos(p0’) cos(u - uo) +cos@?’) cos&’) sin@ - 80). (3) 

The formulae (1). (2), (3) give the direct relationship between the spherical Gaussian- 
shaped model of the ODF and the ideal orientation (hkl}(uuw) introduced by Wasserman 
and Grewen [17] to describe the rolling texture of metals. Defined in terms of Miller indices 
the ideal orientation is a preferred orientation which involves the set of crystal microplanes 
(hkl} parallel to the rolling plane and the crystal direction (uuw) parallel to the rolling 
direction. 

In the case of cubic lattice symmetry, taken as an example, the ideal orientation can be 
expressed readily in terms of Eulerian angles: 

1 1 1 
2 2 p’ = p) U = -(or + y )  8 = -(or - ~ y )  

with go = [UO, 
6 becomes 

(3 

1 

Jhz+ kZ + l 2  
= cos-’ 

U0 = cos-’ 
k 

JPTF (4) 

yo = sin-’ [ Ju2 + W ++ wz/TFj 
so we can determine the orientation distance 6 by means of equation (3) and specify the 
component fi(g0, 6) given by equation (1). 

Now, as was shown in our previous paper 1151, by means of the LPM we can generate 
in a straightforward manner the PF Ph(yi) where y and h; correspond to hi in KO and 
Kb, respectively. Furthermore, it is easy to localize on ph(v) the reflections corresponding 
to the so-called unreduced PFS introduced by Imhof [9] in order to specify just one of 
the, all equivalent, hi,e. For example there are six unreduced PFs corresponding to the 
direction [hOO] in a cubic structure: (OOh), (OhO), @CO), ( O O i ) ,  (do)  and (kW). The 
actual PF is an average over these unreduced PFs; this has been demonstrated in [15] for the 
PF (001) calculated from a Gaussian-shaped ODF centred at go = (0, 0,O). 

These considerations can be used in the M c  calculations by postulating the Eulerian 
angles in orientation space to be the elementary events. In brief, we generate a random 
triad (or, p, y )  E G and under the assumption that there is a set of k experimental PFs each 
of multiplicity Mj, j = 1,2,. . . , k, which should be the projection of the ODF represented 
by a sum of 1 Gaussian-shaped components, and we calculate the corresponding orientation 
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distances &, k = 1,2, . . . , l .  Then, we localize the projection of the particular component 
f k ( g 0 ,  &) on each unreduced PF, and if the calculated pole value is greater than the actual 
value we accept the event to contribute to the pattern; otherwise we reject it. Below we give 
more details on the simulation of the ODF from experimental PFs by means of the combined 
procedure. 

Let No and B be the maximum overall intensity of the selected experimental Ph,(y) 
and the estimated background intensity, respectively. NO is used as a total counter while B 
is the reference value. 

Firstly, each ph(y) is partitioned into two-dimensional cells Apx,  A p y  chosen at equal 
distances in a square circumscribed around the PF with account taken of the experimental 
resolution. In principle, this partition is not mandatory but no experiment could yield enough 
information for all possible sample settings for a reasonable duration of the measurements. 
The centres goi = (oroi, poi, yoi) of the Gaussian components Corresponding to the supposed 
ideal orientations are calculated using (4). 

Next, by means of the randomly generated numbers 61. <z, (3 subject to the condition 
0 < < I , &  < 2~ and 0 6 (2 6 P the triad of Eulerian angles or = 6 1 , p  = h,y = (3 is 
assigned. Thus, a random point corresponding to the orientation g = (or, p, y )  is specified 
in the orientation space. 

Figure 1. The projection of hi on the plane e,  q and projection p on Qe equatorial plane: (a) 
h . .  , is U) ' the upper hemisphere; @) hi is in the lower hemisphere. 

Now, we choose randomly one hi with orthogonal coordinates of its intersection with 
the unit sphere x ,  y and z in K. (see figure 1) from the set of equivalent hi,e of number M 
equal to the multiplicity. The rotation of Ka to Kb transforms the vector p which is 
the stereographic projection of h; onto a plane drawn through the south pole of the unit 
projection sphere 

(5) P = (x + i y M f  - z) 

in the form 

P' = (UP + b)/(-b*P + a*) (6) 

where a = CO@') exp(-io) and b = sin@') exp(iS) are the Cayley-Klein symbols, and a* 
and b* &e the corresponding complex conjugates. We calculate the vector p' and determine 
the components pz ,  p ,  according to the direction of hi with respect to the lower or upper 
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part of the sphere. For a known !A we get 

p = -  2r2 pz = Re ($) p ,  = Im ($) 
P 

for hi lying in the upper hemisphere (figure l(a)) and 

(7) 

for hi belonging to the lower hemisphere (figure I@)). 
From (7) or (8) and (6) we get the coordinates pk and p; of the pole p' = p'(a, p, y )  

= p'(u. fi', 6) and assign to this pole the value of f(u, p', 8) calculated from equation (1). 
Thus, by means of the local projection method we find the point on the pole density map 
which corresponds to the projection of the arbitrarily chosen orientation g. In fact the ideal 
orientations are assumed on the basis of isolines of high-level intensity on the experimental 
PFS [NI. Now, if the value of the pole density is less than the value of the Gaussian function 
describing the ideal orientation, i.e. p c f(g, g0.k; LI), for all unreduced PFs the event g is 
neglected; otherwise g is accepted. 

For g accepted the corresponding triad of Eulerian angles a, f i ,  y together with the 
calculated intensity are stored in a temporary file. Finally, both the value of the content of 
the cell Ap,, A p y  and the total counter No are reduced by subtracting the value f ( g ) .  

The above-described procedure is performed for each hi from the set of hi,e. 
If the current reduced value Nh = (NO - f ( g ) )  > B ,  the procedure is continued for 

the next supposed ideal orientation. After all supposed ideal orientations have been utilized 
the next random g is generated and the calculations are carried out until the current total 
counter value becomes less than B .  

Finally, the distribution function of orientations found in this way is projected by means 
of the LPM in order to obtain the associated PF. 

At this stage the comparison between experimental PFs and calculated PFs by means of 
the above-described combined procedure is based upon experience. Useful information on 
this subject can be found in the paper of Matthies et al [16] where the projection of the 
o-section on the unit sphere is treated. The result of the comparison is accepted as being 
satisfactory in the case where the overall symmetry of PFS is preserved and the calculated 
local pole intensity is near to the measured value. 

The quality of reproduction could be assessed using the reliability factor defined by 

where N is the total number of cells, and Pi? and Pi;" are the recalculated and experimental 
pole values, respectively, in the cell i, j .  

In order to test the combined method described above our first step was to use as input 
data for the MC simulation the unreduced PFs (loo), (OIO), (i00) and (OiO) constmcted by 
means of the local projection method for a Gaussian centred at go = (0,0,45") as a model. 
Then we checked three ideal orientations [I51 [00l}( lOO),  [00l}(OlO) and (001)(110) 
for which the corresponding model ODF is in each case a single Gaussian, centred at 
gl = (0, 0, 0), g2 = (0.45". 0) and gs = (0.0,45') respectively, and perform the MC 
simulation. The resulting four-dimensional array [a, p ,  y ,  f(g)) is projected by the LPM 
onto the basis set of unreduced PFs again. Both the resulting maxima and their locations 
(go = g3) [19] unambiguously proved the validity of the MC method described. 
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(b)  TPF (ZOO) 

Figure 2. (a) An experimental incomplete PF, EPF (200). of Fe-Si cold-rolled steel sheet (see 
the tat).  The levels are equidistant, in steps of 120 from 450 to 1800; additional vesical and 
horizontal lines limit the square within which exprimental data are available. (b) A theoretical 
PP, TH (200). obtained with a Gaussian-shaped oDf (sa = (0, 0.45'). b = ZOO). The calculations 
are with Eulerian angles in steps of Aa = Ap = A y  = 5". The levels are equidistant, with 
steps of 120 from 120 to 1700. 
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(4 EPF (310) 

, , , ,  .., , ,  

Figure 3. (a) An experimental TOF PF, Epf (310). of F d i  cold-rolled stel sheet. The levels 
are equidistant, in steps of 8W from 800 to 7200. (b) The MC-recalculated Pf (310). from a 
model ODF composed of two Gaussians (sol = (0, 0,45') and &" = (0,353'. 45% b = 29") 
corresponding to ideal orientations ~001)(110) and {112](110). The levels are equidistant. in 
steps of 800 from 800 to 7100. 
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The next step was to apply the technique to results of texture measurements on a thick 
specimen of cold-rolled low-carbon steel by means of neutron diffraction. The experimental 
conditions and the other details can be found elsewhere 1201. An incomplete reduced PF 
(ZOO) for which the data for the central and the peripheral parts are missing (figure 2(n)), 
is presented in order to illustrate the possibility of drawing correct conclusions to some 
extent, even in the case of limited information availability. The distribution of isolines 
with a remote resemblance to a four-leaved clover provides grounds for supposing a texture 
orientation {001)(110) to be present, which in terms of Gaussian representation corresponds 
to (0, 0.45"). Obtained with the help of LPM, the theoretically calculated PF based upon 
this model ODF is given in figure 2(b). The result confirms the validity of the assumption 
of the texture orientation {oOl)(llO). However, the PF data make plausible the presence of 
a second texture component, but separating it out would require additional information. 

Figure 3(a) shows the complete reduced PF (310) measured on the same specimen. The 
resulting MC-simulated PF (310). which has been recalculated from a model ODF composed 
of two spherical Gaussians of equal halfwidth b = 29" centred at gl = (0,0,45") and 
gz = (0,35.3", 45") corresponding to ideal orientations [oOl)(llO) and {112)(110), is given 
in figure 3(b). The number of unreduced PFs for (hkO) is 24. The good agreement between 
experimental and recalculated PFS is evident. The reliability factor according to equation (9) 
is R = 10%. 

In conclusion the authors feel that they have demonstrated the applicability of the 
MC approach for the reconstruction of the orientation distribution function (ODF) from 
experimental PFs. At present the MC simulation is combined with the local projection 
method developed recently for generation of the PFs from a model ODF, but other discrete 
methods may also be found to be appropriate. 

The authors would like to thank Dr K Walter and Dr W Voitus (CINR Rossendorf) for 
useful discussions and help with the experiments. 
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